Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 507
Filtrar
1.
Bioresour Technol ; 399: 130556, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460564

RESUMO

Recycling carbon-rich wastes into high-value platform chemicals through biological processes provides a sustainable alternative to petrochemicals. Cupriavidus necator, known for converting carbon dioxide (CO2) into polyhydroxyalkanoates (PHA) was studied for the first time using biogas streams as the sole carbon source. The bacterium efficiently consumed biogenic CO2 from raw biogas with methane at high concentrations (50%) proving non-toxic. Continuous addition of H2 and O2 enabled growth trends comparable to glucose-based heterotrophic growth. Transcriptomic analysis revealed CO2-adaptated cultures exhibited upregulation of hydrogenases and Calvin cycle enzymes, as well as genes related to electron transport, nutrient uptake, and glyoxylate cycle. Non-adapted samples displayed activation of stress response mechanisms, suggesting potential lags in large-scale processes. These findings showcase the setting of growth parameters for a pioneering biological biogas upgrading strategy, emphasizing the importance of inoculum adaptation for autotrophic growth and providing potential targets for genetic engineering to push PHA yields in future applications.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Dióxido de Carbono , Cupriavidus necator/genética , Biocombustíveis , Rios , Poli-Hidroxialcanoatos/metabolismo , Processos Autotróficos
2.
Bioresour Technol ; 398: 130538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452952

RESUMO

Advancement in commodity chemical production from carbon dioxide (CO2) offers a promising path towards sustainable development goal. Cupriavidus necator is an ideal host to convert CO2 into high-value chemicals, thereby achieving this target. Here, C. necator was engineered for heterotrophic and autotrophic production of L-isoleucine and L-valine. Citramalate synthase was introduced to simplify isoleucine synthesis pathway. Blocking poly-hydroxybutyrate biosynthesis resulted in significant accumulation of isoleucine and valine. Besides, strategies like key enzymes screening and overexpressing, reducing power balancing and feedback inhibition removing were applied in strain modification. Finally, the maximum isoleucine and valine titers of the best isoleucine-producing and valine-producing strains reached 857 and 972 mg/L, respectively, in fed-batch fermentation using glucose as substrate, and 105 and 319 mg/L, respectively, in autotrophic fermentation using CO2 as substrate. This study provides a feasible solution for developing C. necator as a microbial factory to produce amino acids from CO2.


Assuntos
Dióxido de Carbono , Cupriavidus necator , Dióxido de Carbono/metabolismo , Isoleucina , Cupriavidus necator/genética , Valina , Processos Autotróficos
3.
ACS Synth Biol ; 13(3): 851-861, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350870

RESUMO

Cupriavidus necator H16 is a "Knallgas" bacterium with the ability to utilize various carbon sources and has been employed as a versatile microbial cell factory to produce a wide range of value-added compounds. However, limited genome engineering, especially gene regulation methods, has constrained its full potential as a microbial production platform. The advent of CRISPR/Cas9 technology has shown promise in addressing this limitation. Here, we developed an optimized CRISPR interference (CRISPRi) system for gene repression in C. necator by expressing a codon-optimized deactivated Cas9 (dCas9) and appropriate single guide RNAs (sgRNAs). CRISPRi was proven to be a programmable and controllable tool and could successfully repress both exogenous and endogenous genes. As a case study, we decreased the accumulation of polyhydroxyalkanoate (PHB) via CRISPRi and rewired the carbon fluxes to the synthesis of lycopene. Additionally, by disturbing the expression of DNA mismatch repair gene mutS with CRISPRi, we established CRISPRi-Mutator for genome evolution, rapidly generating mutant strains with enhanced hydrogen peroxide tolerance and robustness in microbial electrosynthesis (MES) system. Our work provides an efficient CRISPRi toolkit for advanced genetic manipulation and optimization of C. necator cell factories for diverse biotechnology applications.


Assuntos
Cupriavidus necator , RNA Guia de Sistemas CRISPR-Cas , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Expressão Gênica , Carbono/metabolismo , Evolução Molecular
4.
Int J Biol Macromol ; 263(Pt 1): 130360, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387639

RESUMO

As thermoplastic, nontoxic, and biocompatible polyesters, polyhydroxyalkanoates (PHAs) are considered promising biodegradable plastic candidates for diverse applications. Short-chain-length/medium-chain-length (SCL/MCL) PHA copolymers are flexible and versatile PHAs that are typically produced from fatty acids, which are expensive and toxic. Therefore, to achieve the sustainable biosynthesis of SCL/MCL-PHAs from renewable non-fatty acid carbon sources (e.g., sugar or CO2), we used the lithoautotrophic bacterium Cupriavidus necator H16 as a microbial platform. Specifically, we synthesized tailored PHA copolymers with varying MCL-3-hydroxyalkanoate (3HA) compositions (10-70 mol%) from fructose by rewiring the MCL-3HA biosynthetic pathways, including (i) the thioesterase-mediated free fatty acid biosynthetic pathway coupled with the beta-oxidation cycle and (ii) the hydroxyacyl transferase-mediated fatty acid de novo biosynthetic pathway. In addition to sugar-based feedstocks, engineered strains are also promising platforms for the lithoautotrophic production of SCL/MCL-PHAs from CO2. The set of engineered C. necator strains developed in this study provides greater opportunities to produce customized polymers with controllable monomer compositions from renewable resources.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Ácidos Graxos/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Carbono , Dióxido de Carbono , Aciltransferases/genética , Aciltransferases/metabolismo , Glucose/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38366943

RESUMO

The Gram-negative betaproteobacterium Cupriavidus necator is a chemolithotroph that can convert carbon dioxide into biomass. Cupriavidus necator has been engineered to produce a variety of high-value chemicals in the past. However, there is still a lack of a well-characterized toolbox for gene expression and genome engineering. Development and optimization of biosynthetic pathways in metabolically engineered microorganisms necessitates control of gene expression via functional genetic elements such as promoters, ribosome binding sites (RBSs), and codon optimization. In this work, a set of inducible and constitutive promoters were validated and characterized in C. necator, and a library of RBSs was designed and tested to show a 50-fold range of expression for green fluorescent protein (gfp). The effect of codon optimization on gene expression in C. necator was studied by expressing gfp and mCherry genes with varied codon-adaptation indices and was validated by expressing codon-optimized variants of a C12-specific fatty acid thioesterase to produce dodecanoic acid. We discuss further hurdles that will need to be overcome for C. necator to be widely used for biosynthetic processes.


Assuntos
Cupriavidus necator , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Ácidos Graxos/metabolismo , Biologia Sintética , Regiões Promotoras Genéticas , Códon/genética
6.
Microb Cell Fact ; 23(1): 52, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360657

RESUMO

BACKGROUND: Among the polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] is reported to closely resemble polypropylene and low-density polyethylene. Studies have shown that PHA synthase (PhaC) from mangrove soil (PhaCBP-M-CPF4) is an efficient PhaC for P(3HB-co-3HHx) production and N-termini of PhaCs influence its substrate specificity, dimerization, granule morphology, and molecular weights of PHA produced. This study aims to further improve PhaCBP-M-CPF4 through N-terminal truncation. RESULTS: The N-terminal truncated mutants of PhaCBP-M-CPF4 were constructed based on the information of the predicted secondary and tertiary structures using PSIPRED server and AlphaFold2 program, respectively. The N-terminal truncated PhaCBP-M-CPF4 mutants were evaluated in C. necator mutant PHB-4 based on the cell dry weight, PHA content, 3HHx molar composition, molecular weights, and granule morphology of the PHA granules. The results showed that most transformants harbouring the N-terminal truncated PhaCBP-M-CPF4 showed a reduction in PHA content and cell dry weight except for PhaCBP-M-CPF4 G8. PhaCBP-M-CPF4 G8 and A27 showed an improved weight-average molecular weight (Mw) of PHA produced due to lower expression of the truncated PhaCBP-M-CPF4. Transformants harbouring PhaCBP-M-CPF4 G8, A27, and T74 showed a reduction in the number of granules. PhaCBP-M-CPF4 G8 produced higher Mw PHA in mostly single larger PHA granules with comparable production as the full-length PhaCBP-M-CPF4. CONCLUSION: This research showed that N-terminal truncation had effects on PHA accumulation, substrate specificity, Mw, and granule morphology. This study also showed that N-terminal truncation of the amino acids that did not adopt any secondary structure can be an alternative to improve PhaCs for the production of PHA with higher Mw in mostly single larger granules.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/metabolismo , Ácido 3-Hidroxibutírico , Caproatos/metabolismo , Hidroxibutiratos/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Grânulos Citoplasmáticos , Cupriavidus necator/genética , Cupriavidus necator/metabolismo
7.
Appl Microbiol Biotechnol ; 108(1): 164, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252290

RESUMO

The microbial production of polyhydroxyalkanoate (PHA) block copolymers has attracted research interests because they can be expected to exhibit excellent physical properties. Although post-polymerization conjugation and/or extension have been used for PHA block copolymer synthesis, the discovery of the first sequence-regulating PHA synthase, PhaCAR, enabled the direct synthesis of PHA-PHA type block copolymers in microbial cells. PhaCAR spontaneously synthesizes block copolymers from a mixture of substrates. To date, Escherichia coli and Ralstonia eutropha have been used as host strains, and therefore, sequence regulation is not a host-specific phenomenon. The monomer sequence greatly influences the physical properties of the polymer. For example, a random copolymer of 3-hydroxybutyrate and 2-hydroxybutyrate deforms plastically, while a block copolymer of approximately the same composition exhibits elastic deformation. The structure of the PHA block copolymer can be expanded by in vitro evolution of the sequence-regulating PHA synthase. An engineered variant of PhaCAR can synthesize poly(D-lactate) as a block copolymer component, which allows for greater flexibility in the molecular design of block copolymers. Therefore, creating sequence-regulating PHA synthases with a further broadened substrate range will expand the variety of properties of PHA materials. This review summarizes and discusses the sequence-regulating PHA synthase, analytical methods for verifying block sequence, properties of block copolymers, and mechanisms of sequence regulation. KEY POINTS: • Spontaneous monomer sequence regulation generates block copolymers • Poly(D-lactate) segment can be synthesized using a block copolymerization system • Block copolymers exhibit characteristic properties.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Ácido Láctico , Ácido 3-Hidroxibutírico , Cupriavidus necator/genética , Escherichia coli/genética
8.
Int J Biol Macromol ; 256(Pt 2): 128376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007029

RESUMO

As polyhydroxybutyrate (P(3HB)) was struggling with mechanical properties, efforts have been directed towards increasing mole fraction of 3-hydroxyhexanoate (3HHx) in P(3HB-co-3HHx) to improve the properties of polyhydroxyalkanoates (PHAs). Although genetic modification had significant results, there were several issues related to cell growth and PHA production by deletion of PHA synthetic genes. To find out easier strategy for high 3HHx mole fraction without gene deletion, Cupriavidus necator H16 containing phaC2Ra-phaACn-phaJ1Pa was examined with various oils resulting that coconut oil gave the highest 3HHx mole fraction. When fatty acid composition analysis with GC-MS was applied, coconut oil was found to have very different composition from other vegetable oil containing very high lauric acid (C12) content. To find out specific fatty acid affecting 3HHx fraction, different fatty acids from caproic acid (C6) to stearic acid (C18) was evaluated and the 3HHx mole fraction was increased to 26.5 ± 1.6 % using lauric acid. Moreover, the 3HHx mole fraction could be controlled from 9 % to 31.1 % by mixing bean oil and lauric acid with different ratios. Produced P(3HB-co-3HHx) exhibited higher molecular than P(3HB-co-3HHx) from phaB-deletion mutant. This study proposes another strategy to increase 3HHx mole fraction with easier way by modifying substrate composition without applying deletion tools.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Poli-Hidroxibutiratos , Caproatos/química , Ácido 3-Hidroxibutírico/química , Cupriavidus necator/genética , Óleo de Coco , Hidroxibutiratos , Poli-Hidroxialcanoatos/química , Ácidos Láuricos
9.
Bioresour Technol ; 394: 130266, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159815

RESUMO

A recycled-gas closed-circuit culture system was developed for safe autotrophic cultivation of a hydrogen-oxidizing, polyhydroxyalkanoate (PHA)-producing Ralstonia eutropha, using a non-combustible gas mixture with low-concentration of H2 supplied by water electrolysis. Automated feedback regulation of gas flow enabled input of H2, CO2, and O2 well balanced with the cellular demands, leading to constant gas composition throughout the cultivation. The engineered strain of R. eutropha produced 1.71 g/L of poly(3-hydroxybutyrate-co-12.5 mol% 3-hydroxyhexanoate) on a gas mixture of H2/CO2/O2/N2 = 4:12:7:77 vol% with a 69.2 wt% cellular content. Overexpression of can encoding cytosolic carbonic anhydrase increased the 3HHx fraction up to 19.6 mol%. The yields of biomass and PHA on input H2 were determined to be 72.9 % and 63.1 %, corresponding to 51.0 % and 44.2 % yield on electricity, respectively. The equivalent solar-to-biomass/PHA efficiencies were estimated to be 2.1-3.8 %, highlighting the high energy conversion capability of R. eutropha.


Assuntos
Caproatos , Cupriavidus necator , Poli-Hidroxialcanoatos , Fermentação , Cupriavidus necator/genética , Dióxido de Carbono , Gases , Eletrólise
10.
Biotechnol Lett ; 45(11-12): 1487-1493, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37828291

RESUMO

OBJECTIVES: Research on hydrogenases from Cupriavidus necator has been ongoing for more than two decades and still today the common methods for culture inoculation are used. These methods were never adapted to the requirements of modified bacterial strains, resulting in different physiological states of the bacteria in the precultures, which in turn lead prolonged and different lag-phases. RESULTS: In order to obtain uniform and always equally fit precultures for inoculation, we have established in this study an optimized protocol for precultures of the derivative of C. necator HF210 (C. necator HP80) which is used for homologous overexpression of the genes for the NAD+-reducing soluble hydrogenase (SH). We compared different media for preculture growth and determined the optimal time point for harvest. The protocol obtained in this study is based on two subsequent precultures, the first one in complex nutrient broth medium (NB) and a second one in fructose -nitrogen mineral salt medium (FN). CONCLUSION: Despite having two subsequent precultures our protocol reduces the preculture time to less than 30 h and provides reproducible precultures for cultivation of C. necator HP80.


Assuntos
Cupriavidus necator , Hidrogenase , Cupriavidus necator/genética , Hidrogenase/genética , Meios de Cultura , Nitrogênio , Frutose
11.
Biotechnol Adv ; 69: 108264, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37775073

RESUMO

Cupriavidus necator is a bacterium with a high phenotypic diversity and versatile metabolic capabilities. It has been extensively studied as a model hydrogen oxidizer, as well as a producer of polyhydroxyalkanoates (PHA), plastic-like biopolymers with a high potential to substitute petroleum-based materials. Thanks to its adaptability to diverse metabolic lifestyles and to the ability to accumulate large amounts of PHA, C. necator is employed in many biotechnological processes, with particular focus on PHA production from waste carbon sources. The large availability of genomic information has enabled a characterization of C. necator's metabolism, leading to the establishment of metabolic models which are used to devise and optimize culture conditions and genetic engineering approaches. In this work, the characteristics of available C. necator strains and genomes are reviewed, underlining how a thorough comprehension of the genetic variability of C. necator is lacking and it could be instrumental for wider application of this microorganism. The metabolic paradigms of C. necator and how they are connected to PHA production and accumulation are described, also recapitulating the variety of carbon substrates used for PHA accumulation, highlighting the most promising strategies to increase the yield. Finally, the review describes and critically analyzes currently available genome-scale metabolic models and reduced metabolic network applications commonly employed in the optimization of PHA production. Overall, it appears that the capacity of C. necator of performing CO2 bioconversion to PHA is still underexplored, both in biotechnological applications and in metabolic modeling. However, the accurate characterization of this organism and the efforts in using it for gas fermentation can help tackle this challenging perspective in the future.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/genética , Poli-Hidroxialcanoatos/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Fermentação , Biotecnologia , Carbono/metabolismo
12.
Metab Eng ; 79: 49-65, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414134

RESUMO

To advance the sustainability of the biobased economy, our society needs to develop novel bioprocesses based on truly renewable resources. The C1-molecule formate is increasingly proposed as carbon and energy source for microbial fermentations, as it can be efficiently generated electrochemically from CO2 and renewable energy. Yet, its biotechnological conversion into value-added compounds has been limited to a handful of examples. In this work, we engineered the natural formatotrophic bacterium C. necator as cell factory to enable biological conversion of formate into crotonate, a platform short-chain unsaturated carboxylic acid of biotechnological relevance. First, we developed a small-scale (150-mL working volume) cultivation setup for growing C. necator in minimal medium using formate as only carbon and energy source. By using a fed-batch strategy with automatic feeding of formic acid, we could increase final biomass concentrations 15-fold compared to batch cultivations in flasks. Then, we engineered a heterologous crotonate pathway in the bacterium via a modular approach, where each pathway section was assessed using multiple candidates. The best performing modules included a malonyl-CoA bypass for increasing the thermodynamic drive towards the intermediate acetoacetyl-CoA and subsequent conversion to crotonyl-CoA through partial reverse ß-oxidation. This pathway architecture was then tested for formate-based biosynthesis in our fed-batch setup, resulting in a two-fold higher titer, three-fold higher productivity, and five-fold higher yield compared to the strain not harboring the bypass. Eventually, we reached a maximum product titer of 148.0 ± 6.8 mg/L. Altogether, this work consists in a proof-of-principle integrating bioprocess and metabolic engineering approaches for the biological upgrading of formate into a value-added platform chemical.


Assuntos
Cupriavidus necator , Cupriavidus necator/genética , Crotonatos/metabolismo , Engenharia Metabólica/métodos , Formiatos/metabolismo , Carbono/metabolismo
13.
Int J Biol Macromol ; 242(Pt 4): 125166, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270139

RESUMO

The elastomeric properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable copolymer, strongly depend on the molar composition of 3-hydroxyvalerate (3HV). This paper reports an improved artificial pathway for enhancing the 3HV component during PHBV biosynthesis from a structurally unrelated carbon source by Cupriavidus necator H16. To increase the intracellular accumulation of propionyl-CoA, a key precursor of the 3HV monomer, we developed a recombinant strain by genetically manipulating the branched-chain amino acid (e.g., valine, isoleucine) pathways. Overexpression of the heterologous feedback-resistant acetolactate synthase (alsS), (R)-citramalate synthase (leuA), homologous 3-ketothiolase (bktB), and the deletion of 2-methylcitrate synthase (prpC) resulted in biosynthesis of 42.5 % (g PHBV/g dry cell weight) PHBV with 64.9 mol% 3HV monomer from fructose as the sole carbon source. This recombinant strain also accumulated the highest PHBV content of 54.5 % dry cell weight (DCW) with 24 mol% 3HV monomer from CO2 ever reported. The lithoautotrophic cell growth and PHBV production by the recombinant C. necator were promoted by oxygen stress. The thermal properties of PHBV showed a decreasing trend of the glass transition and melting temperatures with increasing 3HV fraction. The average molecular weights of PHBV with modulated 3HV fractions were between 20 and 26 × 104 g/mol.


Assuntos
Acetolactato Sintase , Cupriavidus necator , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Poliésteres/química , Hidroxibutiratos/metabolismo , Carbono/metabolismo
14.
Biotechnol Adv ; 67: 108183, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37286176

RESUMO

Elevated CO2 emissions have substantially altered the worldwide climate, while the excessive reliance on fossil fuels has exacerbated the energy crisis. Therefore, the conversion of CO2 into fuel, petroleum-based derivatives, drug precursors, and other value-added products is expected. Cupriavidus necator H16 is the model organism of the "Knallgas" bacterium and is considered to be a microbial cell factory as it can convert CO2 into various value-added products. However, the development and application of C. necator H16 cell factories has several limitations, including low efficiency, high cost, and safety concerns arising from the autotrophic metabolic characteristics of the strains. In this review, we first considered the autotrophic metabolic characteristics of C. necator H16, and then categorized and summarized the resulting problems. We also provided a detailed discussion of some corresponding strategies concerning metabolic engineering, trophic models, and cultivation mode. Finally, we provided several suggestions for improving and combining them. This review might help in the research and application of the conversion of CO2 into value-added products in C. necator H16 cell factories.


Assuntos
Dióxido de Carbono , Cupriavidus necator , Dióxido de Carbono/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Engenharia Metabólica
15.
Biochem Biophys Res Commun ; 672: 97-102, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343320

RESUMO

Bacterial flagella are assembled with ∼30 different proteins in a defined order via diverse regulatory systems. In gram-negative bacteria from the Gammaproteobacteria and Betaproteobacteria classes, the transcription of flagellar genes is strictly controlled by the master regulator FlhDC. In Gammaproteobacteria species, the FlhDC complex has been shown to activate flagellar expression by directly interacting with the promoter region in flagellar genes. To obtain the DNA-binding mechanism of FlhDC and determine the conserved and distinct structural features of Betaproteobacteria and Gammaproteobacteria FlhDCs that are necessary for their functions, we determined the crystal structure of Betaproteobacteria Cupriavidus necator FlhDC (cnFlhDC) and biochemically analyzed its DNA-binding capacity. cnFlhDC specifically recognized the promoter DNA of the class II flagellar genes flgB and flhB. cnFlhDC adopts a ring-like heterohexameric structure (cnFlhD4C2) and harbors two Zn-Cys clusters, as observed for Gammaproteobacteria Escherichia coli FlhDC (ecFlhDC). The cnFlhDC structure exhibits positively charged surfaces across two FlhDC subunits as a putative DNA-binding site. Noticeably, the positive patch of cnFlhDC is continuous, in contrast to the separated patches of ecFlhDC. Moreover, the ternary intersection of cnFlhD4C2 behind the Zn-Cys cluster forms a unique protruding neutral structure, which is replaced with a charged cavity in the ecFlhDC structure.


Assuntos
Cupriavidus necator , Proteínas de Escherichia coli , Transativadores/metabolismo , Proteínas de Bactérias/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Regiões Promotoras Genéticas , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , DNA/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica
16.
Bioresour Technol ; 379: 129024, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37028529

RESUMO

The conversion of CO2 into valuable bioactive substances using synthetic biological techniques is a potential approach for mitigating the greenhouse effect. Here, the engineering of C. necator H16 to produce N-acetylglucosamine (GlcNAc) from CO2 is reported. First, GlcNAc importation and intracellular metabolic pathways were disrupted by the deletion of nagF, nagE, nagC, nagA and nagB genes. Second, the GlcNAc-6-phosphate N-acetyltransferase gene (gna1) was screened. A GlcNAc-producing strain was constructed by overexpressing a mutant gna1 from Caenorhabditis elegans. A further increase in GlcNAc production was achieved by disrupting poly(3-hydroxybutyrate) biosynthesis and the Entner-Doudoroff pathways. The maximum GlcNAc titers were 199.9 and 566.3 mg/L for fructose and glycerol, respectively. Finally, the best strain achieved a GlcNAc titer of 75.3 mg/L in autotrophic fermentation. This study demonstrated a conversion of CO2 to GlcNAc, thereby providing a feasible approach for the biosynthesis of various bioactive chemicals from CO2 under normal conditions..


Assuntos
Acetilglucosamina , Cupriavidus necator , Animais , Dióxido de Carbono , Cupriavidus necator/genética , Ácido 3-Hidroxibutírico , Caenorhabditis elegans
17.
Microb Cell Fact ; 22(1): 68, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046250

RESUMO

BACKGROUND: This study aimed to isolate a novel thermotolerant bacterium that is capable of synthesizing polyhydroxyalkanoate from glycerol under high temperature conditions. RESULTS: A newly thermotolerant polyhydroxyalkanoate (PHA) producing bacterium, Cupriavidus sp. strain CB15, was isolated from corncob compost. The potential ability to synthesize PHA was confirmed by detection of PHA synthase (phaC) gene in the genome. This strain could produce poly(3-hydroxybutyrate) [P(3HB)] with 0.95 g/L (PHA content 75.3 wt% of dry cell weight 1.24 g/L) using glycerol as a carbon source. The concentration of PHA was enhanced and optimized based on one-factor-at-a-time (OFAT) experiments and response surface methodology (RSM). The optimum conditions for growth and PHA biosynthesis were 10 g/L glycerol, 0.78 g/L NH4Cl, shaking speed at 175 rpm, temperature at 45 °C, and cultivation time at 72 h. Under the optimized conditions, PHA production was enhanced to 2.09 g/L (PHA content of 74.4 wt% and dry cell weight of 2.81 g/L), which is 2.12-fold compared with non-optimized conditions. Nuclear magnetic resonance (NMR) analysis confirmed that the extracted PHA was a homopolyester of 3-hydyoxybutyrate. CONCLUSION: Cupriavidus sp. strain CB15 exhibited potential for cost-effective production of PHA from glycerol.


Assuntos
Compostagem , Cupriavidus necator , Cupriavidus , Poli-Hidroxialcanoatos , Cupriavidus/genética , Cupriavidus/metabolismo , Glicerol/metabolismo , Temperatura , Cupriavidus necator/genética , Cupriavidus necator/metabolismo
18.
Bioresour Technol ; 374: 128762, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36813047

RESUMO

Utilization of all major components of lignocellulose is essential for biomass biorefining. Glucose, xylose, and lignin-derived aromatics can be generated from cellulose, hemicellulose, and lignin of lignocellulose degradation through pretreatment and hydrolysis. In present work, Cupriavidus necator H16 was engineered to utilize glucose, xylose, p-coumaric acid, and ferulic acid simultaneously by multi-step genetic engineering. Firstly, genetic modification and adaptive laboratory evolution were performed to promote glucose transmembrane transport and metabolism. Xylose metabolism was then engineered by integrating genes xylAB (xylose isomerase and xylulokinase) and xylE (proton-coupled symporter) in the locus of ldh (lactate dehydrogenase) and ackA (acetate kinase) on the genome, respectively. Thirdly, p-coumaric acid and ferulic acid metabolism was achieved by constructing an exogenous CoA-dependent non-ß-oxidation pathway. Using corn stover hydrolysates as carbon sources, the resulting engineered strain Reh06 simultaneously converted all components of glucose, xylose, p-coumaric acid, and ferulic acid to produce 11.51 g/L polyhydroxybutyrate.


Assuntos
Cupriavidus necator , Lignina , Lignina/metabolismo , Xilose/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Fermentação , Glucose/metabolismo
19.
Metab Eng ; 75: 78-90, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368470

RESUMO

Conversion of CO2 to value-added products presents an opportunity to reduce GHG emissions while generating revenue. Formate, which can be generated by the electrochemical reduction of CO2, has been proposed as a promising intermediate compound for microbial upgrading. Here we present progress towards improving the soil bacterium Cupriavidus necator H16, which is capable of growing on formate as its sole source of carbon and energy using the Calvin-Benson-Bassham (CBB) cycle, as a host for formate utilization. Using adaptive laboratory evolution, we generated several isolates that exhibited faster growth rates on formate. The genomes of these isolates were sequenced, and resulting mutations were systematically reintroduced by metabolic engineering, to identify those that improved growth. The metabolic impact of several mutations was investigated further using RNA-seq transcriptomics. We found that deletion of a transcriptional regulator implicated in quorum sensing, PhcA, reduced expression of several operons and led to improved growth on formate. Growth was also improved by deleting large genomic regions present on the extrachromosomal megaplasmid pHG1, particularly two hydrogenase operons and the megaplasmid CBB operon, one of two copies present in the genome. Based on these findings, we generated a rationally engineered ΔphcA and megaplasmid-deficient strain that exhibited a 24% faster maximum growth rate on formate. Moreover, this strain achieved a 7% growth rate improvement on succinate and a 19% increase on fructose, demonstrating the broad utility of microbial genome reduction. This strain has the potential to serve as an improved microbial chassis for biological conversion of formate to value-added products.


Assuntos
Cupriavidus necator , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Dióxido de Carbono/metabolismo , Óperon , Carbono/metabolismo , Formiatos/metabolismo
20.
J Basic Microbiol ; 63(2): 128-139, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36192143

RESUMO

A promising strategy to alleviate the plastic pollution from traditional petroleum-based plastics is the application of biodegradable plastics, in which polyhydroxyalkanoates (PHAs) have received increasing interest owing to their considerable biodegradability. In the PHAs family, poly(3-hydroxybutyrate-co-3-hydroxvalerate) (PHBV) has better mechanical properties, which possesses broader application prospects. With this purpose, the present study adopted Cupriavidus necator to synthesize PHBV utilizing volatile fatty acids (VFAs) as sole carbon sources. Results showed that the concentration and composition of VFAs significantly influenced the production of PHAs. Especially, even carbon VFAs (acetate and butyrate) synthesized only poly(3-hydroxybutyrate) (PHB), while the addition of odd carbon VFAs (propionate and valerate) resulted in PHBV production. The 3-hydroxyvalerate (3HV) contents in PHBV were directly determined by the specific VFAs compositions, in which valerate was the preferred substrate for 3HV accumulation. After optimization by response surface methodology, the highest PHBV accumulation achieved 79.47% in dry cells, and the conversion efficiency of VFAs to PHBV reached 40%, with the PHBV production of 1.20 ± 0.05 g/L. This study revealed the metabolic rule of VFAs converting into PHAs by C. necator and figured out the optimal VFAs condition for PHBV accumulation, which provides a valuable reference for developing downstream strategies of PHBV production in industrial applications in future.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Cupriavidus necator/genética , Ácido 3-Hidroxibutírico , Ácidos Graxos Voláteis , Plásticos , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...